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Computational techniques are reported for studies of atomic and molecular first-Born 
inelastic charged-particle scattering cross sections. Detailed illustrative results are presented 
for hydrogenic targets of appropriately defined momentum-transfer-dependent spectral 
moments, scattering cross sections differential in momentum transfer and in scattering angle, 
total inelastic scattering cross sections as functions of incident energy, and Van Hove 
autocorrelation functions describing target charge-density fluctuations. The variations with 
momentum transfer of the moments, the origins of the structures and asymptotic behaviors of 
the correlation functions, and the general characteristics of the scattering cross sections are 
described and clarified on the basis of the shape of the corresponding Bethe surface. 
Evaluations of the Born scattering cross sections differential in angle and in momentum 
transfer help to clarify the ranges of validity of various forms of corresponding static and 
binary-encounter approximations. The Bethe-Inokuti sum rule for the total inelastic scattering 
cross section is recovered in a transparent fashion from the static approximation by taking an 
appropriate high-energy limit, and its range of validity, as well as those of the static and 
binary-encounter approximations, is clarified by comparison with the correct Born result. 
Careful treatments of the scattering kinematics are seen to be important in these connections. 
It is noted throughout that spectral moments of the Bethe surface provide sufftcient infor- 
mation for evaluation of Born cross sections, the consequences of which are investigated in a 
companion article in this issue. 

1. INTR~OUCTI~N 

Fast charged particles generally straggle and stop in condensed matter, losing 
energy by electronic excitation or ionization of the target’s atomic or molecular 
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constituents [l-3]. By contrast, single scattering events can be made to dominate in 
sufficiently low density gases, providing measurements of cross sections differential in 
angle and energy loss useful for elucidating the electronic excitation spectra of 
individual atoms and molecules [4-61. Although theoretical expressions for the 
appropriate high-energy inelastic scattering and excitation cross sections [ 7-101, and 
for the mean energies of straggling, excitation, and stopping [l-3] are well 
known-dating from the early work of Bethe [ 1 ll-detailed computational 
applications of the theory are generally limited by difficulties that arise in 
constructing appropriate complete sets of atomic or molecular eigenfunctions and 
associated discrete and continuum generalized oscillator strengths [ 121. Moreover, 
even when the complete Bethe surface of discrete and continuum generalized 
oscillator strengths is available, troublesome one- and two-dimensional quadratures at 
constant scattering angle or momentum transfer must be evaluated to determine the 
relevant cross sections. Consequently, so-called static, binary-encounter, and sum-rule 
or closure approximations to the differential and total inelastic scattering cross 
sections are generally employed in lieu of the correct Born results [4-lo]. In view of 
the continuing interest in charged-particle energy loss in condensed matter and in 
electron impact-excitation spectroscopy, it would seem useful to devise convenient 
techniques for constructing Bethe surfaces and associated Born scattering cross 
sections that can be applied to complex atomic and molecular targets, and to carify 
aspects of presently employed computational approximations. 

In the present article, spectral properties of Bethe surfaces are studied to establish a 
basis for the formulation of alternatives to the conventional computational approach, 
and to clarify the ranges of validity of static, binary-encounter, and sum-rule approx- 
imations to Born differential and total inelastic scattering cross sections. Detailed 
computations are reported for hydrogenic targets of negative-integer spectral power 
moments that are momentum-transfer dependent [ 131, scattering cross sections 
differential in momentum transfer and in scattering angle 14-61, total inelastic 
scattering cross sections as functions of incident electron energy [7-lo], and so- 
called Van Hove autocorrelation functions describing target charge-density fluc- 
tuations [ 141. Careful quadrature and summation techniques are seen to be required 
for precise evaluations of these spectral properties, which are somewhat scattered in 
the literature or have gone previously unreported. 

The discrete and continuum portions of the calculated spectral moments are seen 
to vary with momentum transfer in accordance with the shape of the corresponding 
Bethe surface. Conversely, it is indicated that moments define optimal generalized 
Gaussian quadratures for evaluations of spectral-integral properties. The ranges of 
validity of static and binary-encounter approximations [4-61 to scattering cross 
sections differential in scattering angle and in momentum transfer are clarified fully 
by comparisons with the corresponding correct Born results. Similarly, the range of 
validity of the Bethe-Inokuti sum rule [8] for the total inelastic scattering cross 
section is determined by comparison with the Born result evaluated using two- 
dimensional quadratures, and its connection with the high-energy limits of static and 
binary-encounter approximations is clarified. Proper treatments of the limiting forms 
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of the scattering kinematics are seen to be essential in these connections. Finally, it is 
indicated that Van Hove autocorrelation functions can provide an alternative 
computational approach to determinations of Bethe surfaces and corresponding Born 
scattering cross sections [8], an approach that has yet to be adopted fully in the 
literature. 

In Section II, the Bethe-Born theory of inelastic scattering is described briefly in 
order to establish notational conventions, and the generalized oscillator-strength 
distribution, or Bethe surface, is identified. The various spectral properties studied 
here are defined in Section III, and their evaluations reported and discussed in 
Section IV. Some general and concluding remarks are made in Section V. Certain of 
the suggestions made and conclusions drawn in the present report are pursued in a 
companion article in this issue. 

II. THE BETHE-BORN APPROXIMATION 

The inelastic cross section differential in excitation energy and momentum transfer 
for the scattering of fast electrons from an individual atomic target, assumed for 
simplicity to have an infinite nuclear mass, can be written in the Bethe-Born approx- 
imation (Hartree atomic units are employed unless indicated otherwise) as [4-10, 151 

d%(&, q) = (2n/qte) df(&, q) dq s(t - & - lQ2). (1) 

Here, t is the incident electron kinetic energy, E is the atomic excitation energy, and 
q=]ki-k,] is th e magnitude of the momentum transferred to the atomic target, with 
k, and k, the final and initial momenta of the scattered electron, respectively. The 
generalized oscillator strength @(E, q) for atomic excitation into the energy interval E 
to E + dc upon transfer of momentum q to the atomic target can be written 

dft&, 9) = [ .$, .&t(q) W, - &I+ gt&, 4)) d&y 

where 

L(4) = C 2~ I(On,r ICI/q) exptiq - r)l hJl* 
r 

and 

& 4) = C 2E I(46.r I(l/q) evtiq . rl h)l* 
r 

@a) 

are the discrete generalized oscillator strengths and continuum generalized oscillator- 
strength density, respectively, which comprise the so-called Bethe surface [7-l 11. 
Equations (2) and (3) are written arbitrarily for a one-electron atomic target with 
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nondegenerate ground state 4,) although most of the development is not limited to 
this case. The discrete excitation energies E, and eigenfunctions Qn,r have their 
customary meanings, the form of Eq. (3b) implies the continuum eigenfunctions #,r 
are delta-function normalized in the excitation energy [ 161, and the summations in 
Eqs. (3) are over all quantum numbers r labelling degeneracy. The energy-conserving 
delta function is included in Eq. (1) to emphasize that the variables q and E are not 
entirely independent, and must satisfy the kinematic relation 

q* = 4t( 1 - (E/22) - (1 - E/t)“* cos B), (4) 

where 0 is the scattering angle between k, and k,. In spite of the kinematical 
constraint of Eq. (4), which follows from the delinition of q and conservation of 
energy, it is customary and convenient when referring to the generalized oscillator 
strength @(E, q) of Eqs. (2) and (3) to consider its behavior for all E and q. 

As noted originally by Bethe [ 111, and in a somewhat more general context by 
Van Hove [ 141, the particularly simple form taken by Eq. (1) is, in part, a conse- 
quence of employing q and E rather than 0 and E as variables. In the present 
development, q and E are generally preferred, although the kinematic relation of 
Eq. (4) can always be employed to replace the momentum transfer q with the 
appropriate scattering angle f? at a given excitation energy E. In this case, the doubly 
differential inelastic scattering cross section takes the form 

d’*‘a(e, 19) = (4n/&q(E, O)‘)( 1 - s/t)“* df(s, q(e, 0)) sin 6 de, (5) 

where the dependence of momentum transfer q(&, t9) (Eq. (4)) on scattering angle 0 
and excitation energy E is explicitly indicated, making the energy-conserving delta 
function of Eq. (1) unnecessary in Eq. (5). The factor (1 - s/t)“* appearing in Eqs. 
(4) and (5) is seen to be the ratio of the magnitudes of final to initial momentum 
k,/k, of the scattered electron. 

III. SPECTRAL PROPERTIES OF BETHE SURFACES 

The spectral properties of Bethe surfaces of interest here, which can be expressed 
as Riemann-Stieltjes integrals over the appropriate generalized oscillator-strength 
distributions, are defined in this section. 

A. Spectral Moments 

Equations (3) can be employed in determining the Bethe surface [Eq. (2)] for a 
particular target when the. necessary eigenstates 4, r and 
convenient forms. More generally, it is useful to recognize that 

#E,r are available in 

a-(-% 4) > 0, EI<E<a3 (6) 

for fixed momentum transfer q or scattering angle B and an atomic target in its 
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ground state. Consequently, the cumulative generalized oscillator-strength distribution 

is a nondecreasing function of E for fixed q or 8. Such distributions are characterized 
uniquely by their power moments [ 17, 181, which in the case of fixed momentum 
transfer q are written in the form [ 131 

Alternatively, spectral moments corresponding to fixed scattering angle 0 can also be 
defined, although these are not employed explicitly here. 

A finite number of spectral moments define a set of optimal generalized Gaussian 
quadratures useful for evaluating integral properties of the Bethe surface, and for the 
construction of the corresponding distribution f(e, q) [ 17-191. Consequently, it is 
important to study the moments of Eq. (8), and to note that they can be computed 
without reference to the eigenstates Q,,,r and #E,r. Enforcing closure in Eq. (8) gives 

S(q, i> = 2% 1(1/q) w(-4 . r>(% -KJ’+ ‘(l/q) exp(iq - r)l hJ7 (9) 

where Eqs. (2) and (3) have been employed, and (H, -E,)‘+’ is defined in the 
subspace orthogonal to do. In the cases i = 2, 1, 0, and -1, Eq. (9) provides 
expressions for S(q, i) as expectations values over the ground-state wavefunction 
[20]. For i < -1, Eq. (9) can be evaluated employing complete sets of L* basis 
functions [ 191, or appropriate integral-transform techniques in certain cases [ 2 11, 
without prior construction of the #“,r and de,r. 

B. Scattering Cross Sections 

Although experiments are generally performed at a fixed scattering angle, it is 
convenient for computational purposes to consider the inelastic cross section 
differential in momentum transfer. This quantity is obtained from Eq. (1) by 
integration over excitation energy in the form 

d”W?) = (wrlqo wn,,((1), 4) &, (104 

where 

W,,,(q), 4) = J”‘“‘“’ (l/E) 4-h 4) (lob) 
81 

and 

%l,,(q) = 9(20”* - 472 (1Oc) 

is the maximum allowable excitation energy at a given allowable momentum transfer 



SCAlTERING CROSS SECTIONS, I 49 

q, determined from Eq. (4) with 8 equal to 0 or 7c for q less than or greater than 
(2t)“‘, respectively. The energy-conserving delta function in Eq. (1) limits the 
integration in Eq. (lob) to the indicated range. In addition, as the integration 
proceeds from E, to emax at fixed momentum transfer q, the kinematic relation of 
Eq. (4) requires that the scattering angle vary between its extreme values 8,,,(q) and 
O,,,(q). These are conveniently tabulated in the forms 

&l,,(q) = e(qP El); 

e,,,(q) = sin-‘[q/(2t)“*]; 

4dd = 7d2 

tdd = 71; 

qmin G 4 < (2c*)1’27 

(2&y* < q < (2t)“2, 

q = (2t)“2, 

(20”’ < 4 < 4max. 

(114 

(lib) 

(llc) 

(1 W 

Here, B(q, E,) is obtained by solving Eq. (4) for f? with E = E,, and qmin,max is the 
smallest/largest overall allowable momentum transfer for given indicent energy t 
(Eq. (14b)). Consequently, the cross section differential in momentum transfer 
(Eqs. (10)) does not correspond to a single scattering angle, but, rather, to the range 
of angles &,,,,(q) to Bmax(q) for a given value q of momentum transfer, indicated by 
Eqs. (11). Although the cross section of Eqs. (10) is generally not directly 
measurable, it can be constructed from experimental data by appropriate kinematical 
analysis, and, moreover, provides a convenient vehicle for clarifying static and sum- 
rule approximations to total inelastic scattering cross sections. 

The inelastic cross section differential in scattering angle, which can be measured 
more directly than the cross section of Eqs. (IO), is obtained from Eq. (5) by 
integrating over excitation energy in the form 

d%(e) = 4qe) sin e de, 

where 

ee) = f ((1 - w*iw, en df(E, 4(6 e)). (12b) 
Et 

Generally, Eq. (12a) does not correspond to a single value of momentum transfer, 
since q(c, 8) varies over its kinematically allowable range (Eq. (4)) as the integration 
in Eq. (12b) proceeds from E, to t. The extreme values of momentum transfer are 
obtained from Eq. (4) at fixed angle 0 in the forms 

q,i,P) = dh y a 

= (2t)‘/2 sin e, 

= (2t)“‘, 

qmam = w)*~*, 

= dE19 69, 

for 0(8<8,, VW 

for 8, < e < x/2, (13b) 

for 71/2<e<R, (13c) 

for o<e<e,, (1W 

for 8, < e < 7r, (134 
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t9, = cos-‘[(1 - &,/f)“2] r 0, 

6, = cos-‘[i(l - &i/C)“2] r 7r/3, 

and q(el, 0) is given by Eq. (4) with E = ei . 

(13f) 

(1%) 

The kinematical limits of Eqs. (11) and (13) are written out in detail to emphasize 
that the singly differential cross sections of Eqs. (10) and (12) refer to different paths 
of integration over the Bethe surface in the E -q plane. Consequently, different 
portions of the Bethe surface generally control the values of the cross sections- of 
Eqs. (10) and (12), and different approximations are appropriate in computational 
studies. In addition to the two latter singly-differential cross sections, the inelastic 
cross section differential in excitation energy is obtained by integrating Eq. (1) over 
all kinematically allowed momentum transfer at fixed E, or by integrating Eq. (5) over 
all scattering angles at fixed E [8], although this quantity is not considered explicitly 
here. 

The total inelastic scattering cross section at incident energy t is obtained from 
Eq. (10) by integrating over all momentum transfer in the form [4-10) 

uinelastic = @r/t) J”““^ (l/q) W,,,(q)7 s> & (19 
qmin 

where 

9 max,min = (29”’ f (2t - 2&,)“2 E [2(2t)“‘]/[&,/(2t)“*] (14b) 

is the largest/smallest allowable momentum transfer, obtained from Eq. (4) with 
0=x/O and E=E,. Note that qmin z 0 and qmax is approximately twice the 
momentum of the incident electron. An alternative expression for the total inelastic 
scattering cross section which is formally identical to Eq. (14a) is obtained by 
integrating Eq. (12a) over all scattering angles in the form 

‘inelastic = 4Z 
J 
.n F(8) sin 0 dt?. 
” (15) 

The development of Eqs. (lo)-( 15) emphasizes that the Bethe surface (Eqs. (2) and 
(3)) provides the dynamical information required to construct high-energy inelastic 
electron-scattering cross sections. It is clear, however, that even with explicit 
analytical expressions for df(.s, q), the necessary quadratures, particularly those of 
Eqs. (14) and (15) requiring double integration, can be troublesome. Moreover, more 
generally the necessary Bethe surface is unavailable, and appropriate computational 
approximations are required for construction of scattering cross sections. 

C. Van Hove Autocorrelation Functions 

Although the Bethe surface of Eqs. (2) and (3) specifies the inelastic process of 
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interest here, it is convenient and helpful to consider also the corresponding 
autocorrelation function for scattering. The Fourier integral transform 

@(q, t) = (q2/2) fco (I/E) eiEt df(~ 4) (164 

of the generalized oscillator-strength distribution defines the appropriate Van Hove 
function [ 141. Using Eqs. (2) and (3) @(q, r) can be written in the alternative form 

where 

and 

p(q, t) = eiq’ r(‘) (174 

r(t) = eiHOf r e - iH0f (17b) 

is the position operator of the target electron in the interaction picture. Equation 
(16b) evidently corresponds to a position-time autocorrelation function for target- 
atom electrons. The use of such so-called intermediate scattering or correlation 
functions in descriptions of the absorption and scattering of light-and of the 
scattering of particles-by crystals, liquids, and gases is widespread (221, although 
applications to electron scattering by individual atoms and molecules have not been 
previously reported. Subsequent Fourier transformation of Eq. (16b) in the 
momentum-transfer variable q to the conjugate position variable r gives the full space 
and time Van Hove autocorrelation function for the electrons of the atomic target 
[ 141. It is convenient in the present development, however, to limit attention to 
density fluctuations associated with a given wave number q, and thus to deal with Eq. 
(16a). Note that Eq. (16a) refers to Fourier transformation of the inelastic portion of 
the Born cross section. When the corresponding elastic contribution is included in the 
Fourier transform an additional time-independent term-proportional to the so-called 
atomic form factor-appears in the resulting correlation function [ 141. This term is 
explicitly subtracted in Eq. (16b), emphasizing that only inelastic contributions are 
included in the definition of Eq. (16a). 

It is of some interest to note that the conventional moment-expansion approach to 
time autocorrelation functions is not directly applicable in the present case [22]. That 
is, introduction of a Taylor series expansion in Eq. (16a) gives 

@%I, t) = (q2/2) JW (l/E) 5 w~)klk! 1 a-@9 4) 9 k=O 

= (q2/2) kzo [Wk/k!l Sk, k - I), (17c) 

where the order of integration and summation has been interchanged in the usual 
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way. Since the moments S(q, k - 1) (Eq. (8)) diverge for k > 3.5, it is clear Eq. (16~) 
is useful only in the limit t + 0. Because the integrand of Eq. (16a) is oscillatory, it is 
also clear that direct evaluation of the autocorrelation function by quadratures when 
a”(~, q) is known can be troublesome, and requires careful treatment. 

IV. CALCULATIONS IN ATOMIC HYDROGEN 

Atomic hydrogen provides a useful example for investigating the spectral-integral 
properties of Bethe surfaces. In this case, the discrete and continuum portions of the 
generalized oscillator-strength spectra are given by the expressions [7-l 1 ] 

E, = f[ 1 - (l/n’)], n = 2, 3,..., (184 

f(q) = 2*nyn* - l)[(n’ - 1)/3 + dq’][(n - 1)’ + dq*]‘“-3’ 
n [(n + 1y + n*q2]‘“+3’ 

) n = 2, 3 )...) (18b) 

d&3 4) = 
29&(q2 + 2c/3) exp[-2k(s)-’ tan-‘(2k(s)/(q2 - 2~ + 2))J 
[(q + k(e))* + 113[(q - k(e))2 + 113[ 1 - exp(-2nk(e)-‘)I’ (18~) 

k(E) = (2~ - l)“*, + < E < co, (184 

with which the spectral moments, cross sections, and correlation functions of 
Section III can be evaluated. 

A. Spectral Moments 

Explicit evaluation of the sum rules of Eq. (9) provides the five analytic 
expressions [ 20,2 1 ] 

S(q, 2) = ; + q2 + 4s” VW 

S(q, 1)=3+$12, (19b) 

m, 0) = 1, (19c) 

qq, -1) = 2[ 1 - (1 + q2/4)-4]/q2, (194 

s(q 
9 

-2) = (48 + 37q2/4 + q4 + %f/W + 2 141 + q*P) 
12( 1 + q2/4)5 q2(1 + q2/4)4 . (19e> 

These moments can be compared with those evaluated directly from the defining Eq. 
(8) using Eqs. (18). Various quadratures for the continuum contribution [23] and 
appropriate summation techniques for the discrete contribution [24] provide sum 
rules that agree with Eqs. (19) to at least ten significant figures. Gauss-Jacobi 
quadratures, with density parameters chosen (a = 0, /3 = -4 or $) to insure 
asymptotically exact integration of the Bethe surface in the energy variable E, and 
Gauss-Legendre quadratures are found to be particularly satisfactory [23]. In 
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connection with the summations required in the evaluation of the discrete 
contributions to the spectral sums, it is helpful to note (Eq. (18b)) thatf,(q) +f(q)/n3 
for large n [24]. The higher order negative-integer (k < 0) spectral moments so 
obtained reproduce the known q = 0 values to approximately twenty significant 
figures [25], and, consequently, are expected to be reliable for all q values [26]. 

Discrete and continuum contributions to the sum rules of Eqs. (19), obtained from 
Eqs. (8) and (18) employing Gauss-Jacobi-Legendre quadratures and appropriate 
summations, are shown in Fig. 1 [27]. The discrete-spectrum contributions to S(q, 2) 
and S(q, 1) are seen to be negligibly small for q 2 1 a.u., indicating that these 
moments are dominated by the continuum portion of the spectrum [26]. Although the 
discrete-spectrum contributions to the other three moments are significant for small q, 
they evidently become negligible for q 2 2.0 a.u. It is found, however, that the higher 
order negative-integer moments k < -3 are dominated by the discrete spectrum for all 
q, and that they decrease with q according to the expression S(q --) a~, -k) + (2/q2)k 
[28]. This decrease reflects the general shape of the Bethe surface of Eqs. (18), which 
includes a pronounced maximum in the continuum oscillator-strength density (Eq. 
(18c))--the so-called Bethe ridge-that follows approximately the curve E = 49’ in 
the F - q plane at high energy and momentum transfer [8]. This ridge or maximum in 
the continuum oscillator-strength density is a feature common to the Bethe surfaces 
of all atoms and molecules, and is a consequence of the validity of the free-electron 
binary-encounter description of inelastic scattering at high energies [8]. By contrast, 
at small momentum transfer, the spectral moments S(q, k) approach their dipole 
limits, which are uniquely determined by the corresponding photoabsorption cross 
sections [ 181. The moment of Eq. (19d) enters subsequently in the evaluation of the 
static and binary-encounter approximations to differential and total inelastic 
scattering cross sections. 

I 

k=O 

MOMENTUM TRANSFER q (a.u.) 

FIG. 1. Spectral sums S(q, k) (2 > k > -2) for the Bethe surface in atomic hydrogen: (- - -) discrete 
and (-) continuum contributions obtained from Eqs. (8) and (18) employing Gauss-Jacobi-Legendre 
quadratures and appropriate summations. The discrete contributions, which are not labeled, decrease 
sequentially in the order k = -2, -1, 0, 1, 2. All values in Hartree atomic units. 
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B. Scattering Cross Sections 

Precise evaluation of the scattering cross sections differential in momentum 
transfer and in scattering angle, and of the total inelastic scattering cross section, 
provides the basis for clarification of corresponding static, binary-encounter, and 
sum-rule approximations. 

In the context of the scattering cross section of Eqs. (lo), wherein the variables q 
and E are employed, the so-called static approximation corresponds to taking the 
limits [4-6, 29, 301 

LA?) -+ CQ (204 

wIllaxtq)9 4) + JW (l/E) 4-c% 4) = Sk, -1) Wb) 
&I 

in Eqs. (10) for all values of momentum transfer. Consequently, the static approx- 
imation to the scattering cross section differential in momentum transfer (Eq. (lOa)) 
is simply 

d%,(q) = (2?T/qt) S(q, -1) dq. WC) 

Evidently, the only approximation made in obtaining Eq. (20~) is the extension of the 
integration in Eq. (lob) to infinity, involving an approximation to the kinematical 
relation of Eq. (lOc), the effects which can be readily discerned by comparison with 
precise evaluation of Eqs. (10). In view of Eqs. (10~) and (14b), it is anticipated that 
the approximation of Eqs. (20) can be a poor one for both small and large values of q 
at a fixed incident energy t. In the former case E,,,(q) -+ E, as q -+ qmin, invalidating 
Eq. (20a), whereas in the latter case, the large contribution from the Bethe ridge is 
incorrectly included in Eq. (20b) for q 2 (2t) . “* Because of the positive integrand 
involved, however, it is clear that Eq. (20~) always provides an upper bound to Eq. 
(lOa) for all q. These observations are verified by the results shown in Fig. 2, where 
the S(q, -1) sum rule for atomic hydrogen (Eq. (19d)) is compared with convergent 
values of the factor S(E,,,(q), q) (Eqs. (10)) for four values of incident energy. 
Quadrature techniques similar to those employed in evaluating spectral moments are 
used in determining precise values of Eq. (lob) from Eqs. (18) [26]. 

Evidently, the correct and static results in atomic hydrogen shown in Fig. 2 are in 
good agreement for all incident energies except at very small and large values of 
momentum transfer. The failure of the approximation at large q is apparent in the 
figure only for the smallest value of incident energy considered (1 keV z 36.7 a.u.), 
however. Although the latter may seem to be a low incident energy, it is two orders 
of magnitude greater than the ionization potential in atomic hydrogen, and thus in the 
range of validity of the Born approximation [3 11. Since the S(q, -1) sum rule is in 
any event small in the neighborhood of qmax (Eq. (14b)), and in view of the (l/q) 
factor in Eq. (~OC), the discrepancy at large q is perhaps not a significant one [32]. 
The failure of the static approximation at small momentum transfer is always 
significant, however, in that no matter how high the incident energy, the S(q, -1) 



SCATTERING CROSS SECTIONS, I 55 

2.0 

3 I.8 

0 1.6 
2 
J 1.4 

i::; 

c 
” 0.0 

f 0.6 

c” 
5 0.4 

MO2 

FIG. 2. Scattering factor S(c,,,(q), q) appearing in the Bethe-Born inelastic cross section 
differential in momentum transfer for atomic hydrogen; convergent correct values of Eqs. (10) and (18): 
(- -) t = 1 keV; (. .) t = 5 keV; (- -) t = 25 keV; (-) S(q, -1) static approximation of Eq. (19d). 
Ordinate and abscissa in Hartree atomic units. 

sum rule has a finite limit as q -+ qmin, whereas the correct scattering factor 
S(c,,,(q), q) goes to zero as q--f qmin in every case. Consequently, the static approx- 
imation to the cross section (Eq. 20~)) is large and finite as q + qmin, whereas the 
correct scattering cross section differential in momentum transfer (Eq. (10a)) has a 
zero limit as q -+ qmin. With the exception of the large and small q regions, the results 
of Fig. 2 indicate that the static approximation to the inelastic cross section 
differential in momentum transfer is a. good one in atomic hydrogen over the 
kinematically allowable range of momentum transfer, and provides an upper bound to 
the correct values. 

An alternative to the static approximation (Eq. (20~)) to the cross section 
differential in momentum transfer (Eqs. (10)) is obtained in the spirit of the binary- 
encounter approximation [4-61 by replacing the correct oscillator-strength density 
(Eqs. (18)) in Eq. (lob) with the expression 

&w(G 4) =&e(q) El@ - 4*/21* + 4*1 -3, 

where the normalization factor N,,(q) is chosen to satisfy (341 

s(q, -1) = N,,(q) jm [(E - q*/2)* + q2]-3 de. 
5 

@lb) 

Equation (21a) provides an approximation to the Bethe ridge appearing in the correct 
oscillator-strength density of Eq. (18~) [8], and reflects the free-electron binary- 
encounter description of inelastic scattering at high energy.Although Eq. (21a) is 
appropriate specifically for atomic hydrogen, a similar sum-rule constrained approx- 
imation can be devised for arbitrary atoms and molecules provided an appropriate 
ionization energy is incorporated in the development [8, 341. 
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Introducing the approximation of Eqs. (21a) and (21b) into Eqs. (lOa) and (lob) 
and integrating over the kinematially correct range of excitation energy (E[, c,,,(q)) 
gives 

(21c) 

where 

S&,,,(q), 4) = N,,(q) j-;ax”’ I@ - 4m* + q21 -3 & 

= (2/qZ)[ 1 - (1 + q2/4)-4] I”w* - 4) -fWq -q/2)1 
1742 - ./-(@I - q/2)1 ’ 

with 

f(x) = tan-lx +x/(x’ + 1) + 2x/3(x2 + 1)2. (2le) 

The explicit prescription of Eq. (21d) restricting q values to the kinematically allowed 
range is required to avoid the prediction of negative values. Because the kinematically 
correct limits of integration are incorporated in the development of Eqs. (21), the 
binary-encounter approximation to the scattering factor of Eq. (lob) exhibits the 
correct large and small q behaviors, whereas the static approximation does not. This 
point is illustrated in Fig. 3, where static (Eq. (20b)), binary-encounter (Eq. (21d)), 

m 

MOMENTUM TRANSFER q (a u) 

FIG. 3. Scattering factor (q2/2)S(c,,x(q), q) appearing in the Bethe-Born inelastic cross section 
differential in momentum transfer for atomic hydrogen: (-) static approximation of Eq. (20b); other 
curves refer to both convergent values of Eq. (lob) and corresponding binary-encounter values of Eqs. 
(21d) and (21e); (..,); t = 1 keV; (- - -), I = 5 keV; (---) I = 25 keV. In the small-q insert are shown 
the static result and the correct and binary-encounter (- . -) results for t = 5 keV. All values in Hartree 
atomic units. 



SCATTERING CROSS SECTIONS, I 57 

and correct (Eq. (lob)) values of the scattering factor (q2/2) S(c,,,(q), q) are 
compared. Evidently the binary-encounter approximation of Eqs. (2 la)-(2 le) is 
indistinguishable from the correct Born values on the scale of the figure for the 
incident energies considered, whereas the static approximation (Figs. 2 and 3) is 
incorrect in both the large- and small-q limits. Moreover, as is evident from the insert 
in Fig. 3, the binary-encounter approximation of Eqs. (21) is in excellent agreement 
with the correct Born result of Eqs. (10) even in the immediate neighborhood of qmin 
(Eq. (14b)), where the contributions from the individual discrete states are discernible 
in the correct cross section (261. 

In accordance with the discussion in Section III, it is clear that the cross section of 
Eq. (lOa) at fixed momentum transfer does not correspond to a single scattering 
angle, but rather to a range of angles between B,,,(q) and B,,,(q), as given by the 
expressions of Eqs. (11). Consequently, although Eqs. (20) can provide a generally 
good approximation to the scattering cross section of Eq. (lOa) at fixed momentum 
transfer (Figs. 2 and 3), the corresponding static approximation to the cross section 
differential in scattering angle (Eq. (12a)) can be poor. The static approximation to 
Eq. (12a) is (4-6,29,30] 

where 

d”‘o,(8) = 47r1;,(8) sin 19 d6, (224 

F,(e) = W?,(h -1 )/qe(Q2. (22b) 

Equations (22a) and (22b) are obtained from Eq. (12b) by replacing the 
kinematically correct scattered electron. momentum with its elastic-limit value 
(k,/k, -+ 1, all &)-in which case the momentum transfer q(c, 8) of Eq. (4) also takes 
on the elastic-limit value 

qe(e) = 2P2(1 - cos e)l/* = 2(2t)‘12 sin(8/2) P2c) 

-and extending the upper limit of the integral over excitation energy in Eq. (12b) to 
infinity. Consequently, the approximation inherent in Eqs. (22) is apparently distinct 
from that employed in Eqs. (20). 

In view of the large contribution to the inelastic cross section of Eq. (12a) from the 
Bethe ridge, it can be expected that a useful approximation to d”‘o(B) is obtained 
from Eq. (12b) employed the binary-encounter approximation [4-6, 331. In this 
approach, the kinematically correct scattered electron momentum k, and associated 
momentum transfer q(8) are replaced by the corresponding free-electron binary- 
encounter values. The former is given by the expression 

(Whhe = (1 - ~,l~)“* 

= (1 - q,,w/w) 1’2 

for 0 < e Q 8, , (234 

for e, ( e ( 71, Wb) 



58 MARGOLIASH AND LANGHOFF 

and the latter by 

St&9 = q@ 19 8) for 0 <8< 19, (244 

= (2t)“* sin 19 for e, Q 8 < 7~12, WI 

= (2t)“2 for n/2 Q e < n, (24~) 

where q(f+, 0) and 8r are given by Eqs. (13). Finally, the integral over excitation 
energy is extended to infinity, and the factor F,(B) in Eq. (22b) is consequently 
replaced in the binary-encounter approximation by 

ads) = wda -l)(k,ik,),,/q,,(e)*. (25) 

The ranges of validity of Eqs. (22) to (25) can be tested by comparison with the 
correct scattering factor F(8). Since F(B), F,(B), and Fbe(t9) vary by many orders of 
magnitude in the range 0 < 0 < z, however, it is convenient to note that 

w) + vm4, t --) ~0, 

= 1/(8t*(l - cos e)*), (26) 

and to consider, rather, the scattering factor 

H(e) = 8t’( 1 - COS e)‘F(e), (27) 

as well as correspondingly defined factors H,(B) and H&0). 
In Fig. 4, the correct scattering factor H(8), obtained from Eqs. (12) and (18) and 

appropriate quadrature techniques, is compared with H,(B) and Hbe(0) obtained from 

,O- 

0, 
0 30 60 90 ,PO 150 160 

SCATTERING ANGLE e (degrees) 

FIG. 4. Scattering factor H(B) of Eq. (27) appearing in the Bethe-Born inelastic cross section 
differential in scattering angle for atomic hydrogen at t = 1 keV indicent energy: (-) correct values of 
Eqs. (12b), (18), and (27); (*..) static approximation H,(B) of Eqs. (22) and (27); (- - -) binary- 
encounter approximation ITbe of Eqs. (25) and (27). Curves qualitatively similar to those shown here 
are also obtained for t = 5 and 25 keV incident energy [26]. Ordinate in Hartree atomic units. 
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Eqs. (22) and (25), respectively, as functions of scattering angle 0 for t = 1 keV 
incident kinetic energy. Evidently, the static approximation H,(8) provides a good 
representation of H(B) in atomic hydrogen for scattering angles 19 2 30”, although an 
incorrect limit is approached for large 8. By contrast, the binary-encounter approx- 
imation H,,(B) goes to zero for B > 90”, and provides a useful approximation for 
intermediate scattering angles. Although it is not apparent from the figure, H,(B) and 
H&B) have incorrect behaviors as 6’ + 0, and the corresponding factor FS(8) diverges 
in this limit, whereas R’(0) is finite at B = 0. This divergence can, of course, be 
avoided by restricting Eqs. (22) to kinematically correct momentum-transfer values 
greater than or equal to the kinematically correct q,,,,” of Eq. (14b). For larger 
incident energies t, the correct H(B) and binary-encounter H,,(e) scattering factors 
are of the same general form as shown in Fig. 4 and are in increasingly good 
agreement with increasing t, whereas the static result H,(8) continues to provide an 
incorrect limit (H,(e) -+ 1) for large scattering angle [26]. 

Finally, approximations to the total inelastic scattering cross section of Eqs. (14) 
and (15) are investigated. The static approximation in this case is obtained from Eqs. 
(14) and (20) in the form [35, 361 

u static = (2n/t)~qm”(l,‘q)S(q, -1)dq. (28) 
qmin 

Making use of Eq. (19d), the integral of Eq. (28) takes the form 

ustatic = (2n/t)[In(x/(l +x)) + (9x2 + 21x + 13)/12(1 + x)‘]:I$$::,“. (29) 

An excellent approximation to Eq. (29) is obtained from the leading terms in (l/t) 
and ln(t)/t in the form (sr = 0.375 a.u.) 

(t/271)‘static + In(t) + ln(8/.sf) - # = In(t) + 2.96. (30) 

A binary-encounter approximation to the total inelastic scattering cross section is 
obtained from Eqs. (14) and (21) in the form 

u be = @/t) j”““’ (l/q) Sbehn,,(d~ 4) &- (31) 
qnlin 

Although the integral of Eq. (31) cannot be evaluated in closed analytic form, 
extraction of the leading terms gives the convenient asymptotic (t -+ co) expression 
[371 

(t/2n)a,, --f In(t) + ln(8/s:) - 89/60 = In(t) + 2.56 (32) 

which is seen to provide values below the static result of Eq. (30). 
It is of considerable interest to note that an effective lower limit of integration qm 

can always be chosen so that the correct total Born inelastic scattering cross section 

581/49/l-5 
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(Eq. (14a)) is obtained from the static approximation of Eq. (28). The necessary 
condition to be satisfied is seen from Fig. 2 to be 

(2dtf (l/q) w?, -1) & + (21r/rfmax (l/d WL -1) 4 4,. 42 
= GWQ i” (l/q) SC& 

qmin 
mAI) 4) 4 + Gwo j:;“‘ (l/d wnl,x(q)~ 4) & (33) 

where q1 to q2 defines the q interval over which S(q, -1) and S(c,,,(q), q) coincide 
to a specified accuracy for given t (see Fig. 2). Although it is not generally possible 
to determine q,,, from Eq. (33), its value can be inferred in the limit t+ 00. In this 
limit q2 21 is,,, -+ co, causing the second and fourth integrals to vanish, while q may 
be replaced by zero in S(q, -1) and df(e, q) in the remaining integrands (Eq. (lob)). 
Interchanging the orders of the E (Eq. (lob)) and q integrations in Eq. (33) writing 
q&c) = c/(2t)“’ and q,,, = e,/(2t)“’ in accordance with Eq. (14b), with E, a mean 
excitation energy replacing E,, and letting c,,,(q) -+ 00 gives 

S(0, -1) (v’ E ,(2t),,2 (l/q) & = jey (l/E) a-(&~ 0) jc;;*,),,l (l/q) &. (344 
m 

Integration of this equation gives 

S(-1) In E, = 
I 

m (In(s)/&) G!!(E, 0) = L(-1), 
5 

(34b) 

where S(0. -1) E S(-1) and L(-1) are well-known dipole sum rules [ 18, 38, 391. 
Consequently, use of the mean excitation energy 

E, = exp[L(-l)/S(-1)] (35) 

will ensure that the asymptotically correct high-energy limit of the Born inelastic 
scattering cross section is obtained from Eq. (28) with qmin + q,,, = &,/(2t)“‘. In the 
particular case of atomic hydrogen, Eq. (29) with E, -+ E, gives (E, = 0.465 a.u. 
[38,391) 

(c/2n)uinelastic -+ In(t) + ln(8/&) - 13/ 12. Wa) 

Moreover, retaining the next higher order term in the development of Eqs. (33) - (35) 
gives 

(t/27C)uinelastic + In(t) + ln(S/sZ,) - 13/12 - (7/8)/t 

= In(t) + 2.53 - (7/8)/t. Wb) 

The results of Eqs. (33~(36) are seen to be identical with the so-called Bethe-Inokuti 
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SCATTERING ENERGY t (keV) 

FIG. 5. Fano plot of the total Bethe-Born inelastic scattering cross section in atomic hydrogen: (-) 
correct values of Eqs. (14) and (18); (- . -) sum-rule approximation of Eq. (36a); (. . .) sum-rule approx- 
imation of Eq. (36b); (- _ -), static approximation of Eq. (29); (-- -), binary-encounter approximation of 
Eq. (31). All values in Hartree atomic units except as indicated. 

asymptotic approximation to the total inelastic scattering cross section [8, 351, 
derived earlier employing the correct asymptotic expressions for individual-state 
excitation cross sections and subsequent summations [38]. 

In Fig. 5, the predictions of Eqs. (28)-(36) are compared with the correct total 
Born inelastic scattering cross section of Eqs. (14) and (18), obtained by employing 
appropriate quadratures [23,40]. Evidently, the asymptotically correct cross section. 
of Eq. (36b) is a very good approximation to the correct Born result over the entire 
range of allowable scattering energies, with the error never exceeding 5% in the 
energy range t ;L 50 eV. Of course, it should be recognized that the Born cross section 
itself is no longer satisfactory for scattering energies below -50 eV in this case. The 
binary-encounter approximation of Eq. (32) is also in good accord with the Born 
cross section for all incident energy. By contrast, the static approximation of Eq. (29) 
is seen to be generally less satisfactory, even in the high-energy limit. These results 
suggest that the simple binary-encounter expression of Eqs. (21) and (3 1) can be 
highly satisfactory, and that the S(q, -1) sum rule is sufficient for determinations of 
accurate approximations to total inelastic scattering cross sections provided an 
appropriate (Eqs. (33)-(36)) lower limit is employed in the integration over 
momentum transfer. 

C. Van Hove Correlation Functions 

Discrete and continuum contributions to the real and imaginary parts of the 
correlation functions of Eqs. (16) in atomic hydrogen are evaluated employing Eqs. 
(18) and appropriate summation and quadrature techniques [26]. The results so 
obtained for the real parts of the autocorrelation functions for six values of 
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FIG. 6. Real parts of time autocorrelation functions @(q, 1) [ Eqs. (16)j in atomic hydrogen, 
normalized to total values at t = 0 by dividing by the factor q*S(q, -1)/2; (-) continuum contribution; 
(- - -) discrete contribution. Note the changes in time scales in the various frames. Generally similar 
results are obtained for the imaginary portions of Eqs. (16) (not shown). All values in Hartree atomic 
units. 

momentum transfer are shown in Fig. 6. In each case, the total functions are 
normalized to unity at t = 0 by dividing Eq. (16a) by the value q’S(q, -1)/2. The 
imaginary parts (not shown) of the functions are generally similar to the results of 
Fig. 6 [26]. Evidently, the continuum contributions dominate the time autocorrelation 
functions for all q values except q = 0, 1, and the correlations of large-q (small 
wavelength) fluctuations exhibit relatively rapid decay. By contrast, the q = 0, or 
dipole time autocorrelation function in atomic hydrogen exhibits long-time 
oscillations, with the q = 1 function also showing significant oscillation. Evaluation 
of the autocorrelation functions for longer times in these cases indicates continuing 
oscillations beyond t = 200 a.u. (not shown) [26]. As noted by Van Hove [ 141, the 
singularities in the associated density function determine the asymptotic behavior of 
the time autocorrelation function. In the cases q = 0 and 1 it is the discrete resonance 
transition at E, that carries the largest f number and, consequently, controls the long- 
time behavior of @(q, t). Since the Fourier transform of a delta function (Eq. (2)) is 
oscillatory, the results of Fig. 6 are in accord with expectation in these cases. 
Moreover, the secondary or envelope oscillations also evident in the cases q = 0 and 
1 can be attributed to a beat frequency arising from interference between the n = 2 
and 3 contributions to the discrete spectrum (Eqs. (18a) and (18b)). Thef,(q) of Eq. 
(18b) decrease rapidly with increasing q, however, resulting in autocorrelation 
functions for q = 2-5 that have oscillatory long-time behaviors that are too small to 
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be seen on the scale of Fig. 6. Since the Bethe surface as a function of E has a 
prominent maximum-the Bethe ridge indicated above-which broadens and extends 
to higher energy with increasing q, the autocorrelation functions are sharply peaked 
at the time origin of Fig. 6 and exhibit damped oscillations, with periods determined 
by the energy of the maximum of the Bethe ridge at the appropriate qbr value 
[r = W%r 2: W/q~Al. 

The autocorrelation functions of Eqs. (16) and (17) provide an alternative 
perspective for study of inelastic electron-atom or -molecule scattering, in which 
connection approximation techniques for direct determinations of @(q, t) are of 
considerable interest [41]. Because of the absence of a useful short-time expansion of 
the autocorrelation function in this case, indicated in Section III(C), there is no 
obvious extension of the static approximation to finite time [ 141. As might be 
expected, however, the binary-encounter approximation of Eq. (21) provides reliable 
autocorrelation functions for higher momentum transfer values (not shown), since it 
closely reproduces the Bethe ridge in atomic hydrogen. More generally, however, it 
will be necessary in any approximation scheme to obtain a highly reliable implicit 
description of the corresponding Bethe surface, since the autocorrelation function of 
Eqs. (16) and (17) is a rather sensitive transform of the shape of the energy-loss 
spectrum at a given momentum transfer. This sensitivity is in contrast to many other 
autocorrelation functions, which are often highly damped, and are largely insensitive 
to the detailed shape of the corresponding spectral function [22]. 

V. CONCLUDING REMARKS 

In the present article, computational studies are reported of aspects of the 
Bethe-Born approximation to the inelastic scattering of high-energy charged particles 
by atoms and molecules. The relevant scattering cross sections and closely related 
Van Hove autocorrelation functions are identified as spectral (Riemann-Stieltjes) 
integral properties of the corresponding atomic and molecular Bethe surfaces. 
Evaluation of these properties for hydrogenic targets provides a basis for clarifying 
the ranges of validity of the static, binary-encounter, and sum-rule approximations to 
differential and total inelastic cross sections generally employed in lieu of the correct 
Born results. The studies are also a necessary preliminary to formulation of alter- 
natives to conventional Bethe-Born calculations using discrete and continuum target 
eigenfunctions. 

The static approximation to the Born inelastic cross section differential in 
momentum transfer is found to be generally satisfactory for sufftciently high incident 
energy, although incorrect results are obtained in both the low and high momentum 
transfer limits. By contrast, a sum-rule constrained binary-encounter approximation 
to the cross section differential in momentum transfer, that has received relatively 
little attention in the literature, is seen to provide highly accurate values at all 
kinematically correct momentum transfer. The static approximation to the Born 
inelastic cross section differential in scattering angle is also generally unsatisfactory 
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in the limits of both small and large scattering angles, whereas more useful results are 
obtained from the customary binary-encounter approximation. The Bethe-Inokuti 
sum-rule approximation to the total Born inelastic cross section is seen to follow 
directly from .the static approximation and an appropriate choice of lower limit for 
the allowable momentum transfer integration interval. Comparison with the correct 
Born results indicates the approximation so obtained is highly reliable for virtually all 
incident energies, whereas use of the kinematically correct lower momentum transfer 
limit in the static approximation results in a significant overestimate of the total Born 
inelastic scattering cross section for all incident energies. The sum-rule constrained 
binary-encounter approximation to the total inelastic scattering cross section is also 
found to be in excellent agreement with the correct Born results. Finally, Van Hove 
autocorrelation functions describing target-electron charge-density fluctuations of 
specific wavelengths are seen to be sensitive functions of the shape of the 
corresponding energy-loss spectrum, suggesting they can provide a useful alternative 
perspective for studies of first-Born sattering cross sections. In a subsequent 
companion article, generalized Gaussian quadratures defined by spectral moments are 
employed in studies of Bethe surfaces and corresponding Van Hove autocorrelation 
functions (421. 
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